
Deploying, At An Unusual Scale
Andrew Godwin

http://www.flickr.com/photos/whiskeytango/1431343034/

@andrewgodwin



Hi, I'm Andrew.
Serial Python developer
Django core committer
Co-founder of ep.io



Hi, I'm Andrew.
Serial Python developer
Django core committer
Co-founder of ep.io
Occasional fast talker



""Andrew speaks English
like a machine gun

speaks bullets.""
Reinout van Rees



We're ep.io
Python Platform-as-a-Service
Easy deployment, easy upgrades
PostgreSQL, Redis, Celery, and more



Why am I here?
Our Architecture
How we deploy Django
How varied Django deployments are 



Our Architecture



Balancer

Runner Runner Runner
App 1
App 2

App 3
App 2

App 4
App 1

Databases File Storage

Balancer



Oh My God, It's Full of Pairs
Everything is redundant
Distributed programming is Hard



Hardware
Real colo'd machines
Linode
EC2 (pretty unreliable)

(pretty reliable)
(pretty reliable)

IPv6 (as much as we can)



ØMQ
We used to use Redis
Everything now on ZeroMQ
Eliminates SPOF*

* Single Point Of Failure. What a pointless acronym.



ØMQ Usage
Redundant location-resolvers (Nexus)
REQ/XREP for control messages
PUSH/PULL for stats, logs
PUB/SUB for heartbeats, locking



Runners
Unsurprisingly, these run the code
SquashFS filesystem images
Virtualenvs per app
UID & permission isolation, more coming



Logging/Stats
All done asynchronously using ØMQ
Logs to filesystem (chunked files)
Stats to PostgreSQL database, for now



Loadbalancers
Intercept all incoming HTTP requests
Look up hostname (or suffix)
HTTP 1.1 compliant



Databases
Shared (only for PostgreSQL)
Dedicated (uses Runner framework)
PostgreSQL 9, damnit



Django in the backend
We use the ORM extensively
Annoying settings fiddling in __init__



www.ep.io
Runs on ep.io, just like any other app*
Provides JSON API, web UI

* Well not quite - App ID 0 is special - but we're working on it



WSGI
It's a standard, right?



WSGI
It's a standard, right?
Well, yes, and it works fine, but it's not
enough for serving a Python app



Static Files
CSS, images, JavaScript, etc.
Needs a URL and a directory path



Python & Dependencies
Mostly filled by pip/buildout/etc
packaging apparently allows version spec



Deploying Django
It makes things consistent, right?



Settings Layouts
Vanilla settings.py
local_settings.py
configs/HOSTNAME.py
Many others...



Python Paths
Project-level imports
App-level imports
apps/ directories



Databases
If it's SQL, it's PostgreSQL
Redis for key-value, MongoDB soon
Some things assume a safe network



HA (High Availability)
Not terribly easy with shared DBs
PostgreSQL 9's sensible warm standby
Redis has SLAVEOF
Possibly use DRBD for general solution



Backups
High Availability is NOT a backup
btrfs for consistent snapshotting
Archived remote syncs
No access to backups from servers



Migrations
No solution yet for migration/code sync
We're working on it...



Web serving
It's not like it's important or anything



gunicorn
Small and lightweight
Supports long-running requests
Pretty stable



nginx
Even more lightweight
Extremely fast
Really, really stable



The Load Balancer
Used to be HAProxy
Rewritten to custom Python daemon
eventlet used for high throughput
Can't use nginx, no HTTP 1.1 for backends



Celery
See: Yesterday's Talk
Slightly tricky to run many
We use Redis as the backend



Management Commands
First off, run as subprocess
Then, a custom PTY module
Now, run as pty-wrapping subprocesses



Some General Advice
If you're crazy enough to do this



Messaging's Not Enough
Having a state to check is handy



Why run one, when you can
run two for twice the price?

Redundancy is good. Double redundancy is better.



Always expect the worst
Hope you never have to deal with it.



The more backups, the better.
Make sure you have historical ones, too.



Django is very flexible
Sometimes a little too flexible...



Your real problems will emerge later
Don't over-optimise up front for everything



Questions?
Andrew Godwin
andrew@ep.io
@andrewgodwin


