

Daemons, Deployment
and Datacentres

Andrew Godwin
@andrewgodwin

Who am I?
 Django core developer
 South author
 Cofounder of ep.io

What's ep.io?
 Hosts Python sites/daemons
 Technically language-independent
 Supports multiple kinds of database
 Mainly hosted in the UK on our own hardware

What I'll Cover
 Our architecture

 ZeroMQ and redundancy
 Eventlet everywhere
 The upload process
 The joy of networks

 General Challenges
 ”The Stack”
 Backups and replication
 Sensible architecture

ZeroMQ & Redundancy

ZeroMQ
 Most importantly, not a message queue
 Advanced sockets, with multiple endpoints
 Has both deliver-to-single-consumer, and

deliver-to-all-consumers.
 Uses TCP (or other things) as a transport.

Socket Types

REQ / REP

PUB / SUB

PUSH / PULL

Redundancy
 Our internal rule is that there must be at least two

of everything inside ep.io.
 Not quite true yet, but getting very close.
 Even our ”find the servers running X” service is

doubly redundant.

Example
Make and connect the socket

sock = ctx.socket(zmq.REQ)

for endpoint in self.config.query_addresses():

 sock.connect(endpoint)

Construct the message

payload = json.dumps({"type": type, "extra": extra})

Send the message

with Timeout(30):

 sock.send(self.sign_message(payload))

 # Recieve the answer

 return self.decode_message(sock.recv())

Redundancy's Not Easy
 Several things can only run once (cronjobs)
 We currently have a best-effort distributed locking

daemon to help with this

Eventlet Everywhere

What is Eventlet?
 Coroutine-based asynchronous concurrency
 Basically, lightweight threads with explicit context

switching
 Reads quite like procedural code

Highly Contrived Example
import eventlet

from eventlet.green import urllib2

urls = ['http://ep.io', 'http://t.co']

results = []

def fetch(url):

 results.append(urllib2.urlopen(url).read())

for url in urls:

 eventlet.spawn(fetch, url)

Integration
 Most of our codebase uses Eventlet (~20,000 lines)
 Used for concurrency in daemons, workers, and

batch processing
 ZeroMQ and Eventlet work together nicely

Why?
 Far less race conditions than threading
 Multiprocessing can't handle ~2000 threads
 More readable code than callback-based systems

The Upload Process

Background
 Every time an app is uploaded to ep.io it gets a

fresh app image to deploy into
 Each app image has its own virtualenv
 The typical ep.io app has around 3 or 4

dependencies
 Some have more than 40

Parellised pip
 Installing 40 packages in serial takes quite a while
 Our custom pip version installs them in parallel,

with caching
 Not 100% compatable with complex dependency

sets yet

Some Rough Numbers
 15 requirements, some git, some pypi:

 Traditional: ~300 seconds
 Parellised, no cache: 30 seconds
 Parellised, cached: 2 seconds

Compiled Modules
 ep.io app bundles are technically architecture-

independent
 All compiled dependencies currently installed as

system packages with dual 2.6/2.7 versions
 Will probably move to just bundling .so files too

It's not just uploads
 Upload servers are general SSH endpoint
 Also do rsync, scp, command running
 Commands have semi-custom terminal emulation

transported over ZeroMQ
 Hope you never have to use pty, ioctl or fcntl

A Little Snippet
old = termios.tcgetattr(fd)

new = old[:]

new[0] &= ~(termios.ISTRIP|termios.INLCR|
termios.IGNCR|termios.ICRNL|termios.IXON|
termios.IXANY|termios.IXOFF)

new[2] &= ~(termios.OPOST)

new[3] &= ~(termios.ECHO|termios.ISIG|termios.ICANON|
termios.ECHOE|termios.ECHOK|termios.ECHONL|
termios.IEXTEN)

tcsetattr_flags = termios.TCSANOW

if hasattr(termios, 'TCSASOFT'):

 tcsetattr_flags |= termios.TCSASOFT

The Joy of Networks

It's not just the slow ones
 Any network has a significant slowdown

compared to local access
 Locking and concurrent access also an issue
 You can't run everything on one machine forever

It's also the slow ones
 Transatlantic latency is around 100ms
 Internal latency on EC2 can peak higher than 10s
 Routing blips can cause very short outages

Heuristics and Optimism
 Sites and servers get a short grace period if they

vanish in which to reappear
 Another site instance gets booted if needed – if

the old one reappears, it gets killed
 Everything is designed to be run at least twice, so

launching more things is not an issue

Security
 We treat our internal network as public
 All messages signed/encrypted
 Firewalling of unnecessary ports
 Separate machines for higher-risk processes

General Challenges

The Stack

Three years ago
 Apache and mod_wsgi
 PostgreSQL 8.x
 Memcached

Today
 Nginx (static files/gzipping)
 Gunicorn (dynamic pages, unix socket best)
 PostgreSQL 9
 Redis
 virtualenv

Higher loads?
 Varnish for site caching
 HAProxy or Nginx for loadbalancing
 Give PostgreSQL more resources

Development and Staging
 No need to run gunicorn/nginx locally
 PostgreSQL 9 still slightly annoying to install
 Redis is very easy to set up
 Staging should be EXACTLY the same as live

Backups and Redundancy

Archives != High Availability
 Your PostgreSQL slave is not a backup
 We back up using multiple formats to diverse

locations

It's not just disasters
 Many other things other than theft and failure can

lose data
 Don't back up to the same provider, they can

cancel your account...

Keep History
 You may not realise you need backups until the

next month
 Take backups before any major change in

database or code

Check your backups restore
 Just seeing if they're there isn't good enough
 Try restoring your entire site onto a fresh box

Replication is hard
 PostgreSQL and Redis replication both require

your code to be modified a bit
 Django offers some help with database routers
 It's also not always necessary, and can cause

bugs for your users.

An Easy Start
 Dump your database nightly to a SQL file
 Use rdiff-backup (or similar) to sync that,

codebase and uploads to a backup directory
 Also sync offsite – get a VPS with a different

provider than your main one
 Make your backup server pull the backups, don't

push them to it

Sensible Architecture

Ship long-running tasks off
 Use celery, or your own worker solution
 Even more critical if you have synchronous

worker threads in your web app
 Email sending can be very slow

Plan for multiple machines
 That means no SQLite
 Make good use of database transactions
 How are you going to store uploaded files?

Loose Coupling
 Simple, loosely-connected components
 Easier to test and easier to debug
 Enforces some rough interface definitions

Automation
 Use Puppet or Chef along with Fabric
 If you do something more than three times,

automate it
 Every time you manually SSH in, a kitten gets

extremely worried

War Stories

What happens with a full disk?
 Redis and MongoDB have historically both hated

this situation, and lost data
 We had this with Redis – there was more than 10%

disk free, but that wasn't enough to dump
everything into.

Stretching tools
 Our load balancer was initally HAProxy
 It really doesn't like having 3000 backends

reloaded every 10 seconds
 Custom eventlet-based loadbalancer was simpler

and slightly faster

When Usernames Aren't There
 NFSv4 really, really hates UIDs with no

corresponding username
 In fact, git does as well
 Variety of workarounds for different tools

Even stable libraries have bugs
 Incompatability between psycopg2 and greenlets

caused interpreter lockups
 Fixed in 2.4.2
 Almost impossible to debug

Awkward Penultimate Slide
 You don't have to be mad to write a distributed

process management system, but it helps
 ZeroMQ is really, really nice. Really.
 Eventlet is a very useful concurrency tool
 Every developer should know a little ops
 Automation, consistency and preparation are key

Thank you.
Questions, comments or heckles?

Andrew Godwin
andrew@ep.io / @andrewgodwin

mailto:andrew@ep.io

