

Daemons, Deployment
and Datacentres

Andrew Godwin
@andrewgodwin

Who am I?
 Django core developer
 South author
 Cofounder of ep.io

What's ep.io?
 Hosts Python sites/daemons
 Technically language-independent
 Supports multiple kinds of database
 Mainly hosted in the UK on our own hardware

What I'll Cover
 Our architecture

 ZeroMQ and redundancy
 Eventlet everywhere
 The upload process
 The joy of networks

 General Challenges
 ”The Stack”
 Backups and replication
 Sensible architecture

ZeroMQ & Redundancy

ZeroMQ
 Most importantly, not a message queue
 Advanced sockets, with multiple endpoints
 Has both deliver-to-single-consumer, and

deliver-to-all-consumers.
 Uses TCP (or other things) as a transport.

Socket Types

REQ / REP

PUB / SUB

PUSH / PULL

Redundancy
 Our internal rule is that there must be at least two

of everything inside ep.io.
 Not quite true yet, but getting very close.
 Even our ”find the servers running X” service is

doubly redundant.

Example
Make and connect the socket

sock = ctx.socket(zmq.REQ)

for endpoint in self.config.query_addresses():

 sock.connect(endpoint)

Construct the message

payload = json.dumps({"type": type, "extra": extra})

Send the message

with Timeout(30):

 sock.send(self.sign_message(payload))

 # Recieve the answer

 return self.decode_message(sock.recv())

Redundancy's Not Easy
 Several things can only run once (cronjobs)
 We currently have a best-effort distributed locking

daemon to help with this

Eventlet Everywhere

What is Eventlet?
 Coroutine-based asynchronous concurrency
 Basically, lightweight threads with explicit context

switching
 Reads quite like procedural code

Highly Contrived Example
import eventlet

from eventlet.green import urllib2

urls = ['http://ep.io', 'http://t.co']

results = []

def fetch(url):

 results.append(urllib2.urlopen(url).read())

for url in urls:

 eventlet.spawn(fetch, url)

Integration
 Most of our codebase uses Eventlet (~20,000 lines)
 Used for concurrency in daemons, workers, and

batch processing
 ZeroMQ and Eventlet work together nicely

Why?
 Far less race conditions than threading
 Multiprocessing can't handle ~2000 threads
 More readable code than callback-based systems

The Upload Process

Background
 Every time an app is uploaded to ep.io it gets a

fresh app image to deploy into
 Each app image has its own virtualenv
 The typical ep.io app has around 3 or 4

dependencies
 Some have more than 40

Parellised pip
 Installing 40 packages in serial takes quite a while
 Our custom pip version installs them in parallel,

with caching
 Not 100% compatable with complex dependency

sets yet

Some Rough Numbers
 15 requirements, some git, some pypi:

 Traditional: ~300 seconds
 Parellised, no cache: 30 seconds
 Parellised, cached: 2 seconds

Compiled Modules
 ep.io app bundles are technically architecture-

independent
 All compiled dependencies currently installed as

system packages with dual 2.6/2.7 versions
 Will probably move to just bundling .so files too

It's not just uploads
 Upload servers are general SSH endpoint
 Also do rsync, scp, command running
 Commands have semi-custom terminal emulation

transported over ZeroMQ
 Hope you never have to use pty, ioctl or fcntl

A Little Snippet
old = termios.tcgetattr(fd)

new = old[:]

new[0] &= ~(termios.ISTRIP|termios.INLCR|
termios.IGNCR|termios.ICRNL|termios.IXON|
termios.IXANY|termios.IXOFF)

new[2] &= ~(termios.OPOST)

new[3] &= ~(termios.ECHO|termios.ISIG|termios.ICANON|
termios.ECHOE|termios.ECHOK|termios.ECHONL|
termios.IEXTEN)

tcsetattr_flags = termios.TCSANOW

if hasattr(termios, 'TCSASOFT'):

 tcsetattr_flags |= termios.TCSASOFT

The Joy of Networks

It's not just the slow ones
 Any network has a significant slowdown

compared to local access
 Locking and concurrent access also an issue
 You can't run everything on one machine forever

It's also the slow ones
 Transatlantic latency is around 100ms
 Internal latency on EC2 can peak higher than 10s
 Routing blips can cause very short outages

Heuristics and Optimism
 Sites and servers get a short grace period if they

vanish in which to reappear
 Another site instance gets booted if needed – if

the old one reappears, it gets killed
 Everything is designed to be run at least twice, so

launching more things is not an issue

Security
 We treat our internal network as public
 All messages signed/encrypted
 Firewalling of unnecessary ports
 Separate machines for higher-risk processes

General Challenges

The Stack

Three years ago
 Apache and mod_wsgi
 PostgreSQL 8.x
 Memcached

Today
 Nginx (static files/gzipping)
 Gunicorn (dynamic pages, unix socket best)
 PostgreSQL 9
 Redis
 virtualenv

Higher loads?
 Varnish for site caching
 HAProxy or Nginx for loadbalancing
 Give PostgreSQL more resources

Development and Staging
 No need to run gunicorn/nginx locally
 PostgreSQL 9 still slightly annoying to install
 Redis is very easy to set up
 Staging should be EXACTLY the same as live

Backups and Redundancy

Archives != High Availability
 Your PostgreSQL slave is not a backup
 We back up using multiple formats to diverse

locations

It's not just disasters
 Many other things other than theft and failure can

lose data
 Don't back up to the same provider, they can

cancel your account...

Keep History
 You may not realise you need backups until the

next month
 Take backups before any major change in

database or code

Check your backups restore
 Just seeing if they're there isn't good enough
 Try restoring your entire site onto a fresh box

Replication is hard
 PostgreSQL and Redis replication both require

your code to be modified a bit
 Django offers some help with database routers
 It's also not always necessary, and can cause

bugs for your users.

An Easy Start
 Dump your database nightly to a SQL file
 Use rdiff-backup (or similar) to sync that,

codebase and uploads to a backup directory
 Also sync offsite – get a VPS with a different

provider than your main one
 Make your backup server pull the backups, don't

push them to it

Sensible Architecture

Ship long-running tasks off
 Use celery, or your own worker solution
 Even more critical if you have synchronous

worker threads in your web app
 Email sending can be very slow

Plan for multiple machines
 That means no SQLite
 Make good use of database transactions
 How are you going to store uploaded files?

Loose Coupling
 Simple, loosely-connected components
 Easier to test and easier to debug
 Enforces some rough interface definitions

Automation
 Use Puppet or Chef along with Fabric
 If you do something more than three times,

automate it
 Every time you manually SSH in, a kitten gets

extremely worried

War Stories

What happens with a full disk?
 Redis and MongoDB have historically both hated

this situation, and lost data
 We had this with Redis – there was more than 10%

disk free, but that wasn't enough to dump
everything into.

Stretching tools
 Our load balancer was initally HAProxy
 It really doesn't like having 3000 backends

reloaded every 10 seconds
 Custom eventlet-based loadbalancer was simpler

and slightly faster

When Usernames Aren't There
 NFSv4 really, really hates UIDs with no

corresponding username
 In fact, git does as well
 Variety of workarounds for different tools

Even stable libraries have bugs
 Incompatability between psycopg2 and greenlets

caused interpreter lockups
 Fixed in 2.4.2
 Almost impossible to debug

Awkward Penultimate Slide
 You don't have to be mad to write a distributed

process management system, but it helps
 ZeroMQ is really, really nice. Really.
 Eventlet is a very useful concurrency tool
 Every developer should know a little ops
 Automation, consistency and preparation are key

Thank you.
Questions, comments or heckles?

Andrew Godwin
andrew@ep.io / @andrewgodwin

mailto:andrew@ep.io

