
Relational / Non-relational
Databases

Python and

Andrew Godwin

Introduction
Python for 5 years

Django core developer
Data modelling / visualisation

""Andrew speaks English
like a machine gun

speaks bullets.""
Reinout van Rees

If I speak too fast -
 tell me!

What is a
relational database?

A relational database is
a “collection of relations”

It's what a lot of people
are used to.

Relational Databases
PostgreSQL
MySQL
SQLite

Let's pick PostgreSQL
(it's a good choice)

Usage
conn = psycopg2.connect(
 host="localhost",
 user="postgres"
)
cursor = conn.cursor()
cursor.execute('SELECT * FROM users WHERE
username = "andrew";')
for row in cursor.fetchall():
 print row

You've probably seen all
that before.

Now, to introduce some
non-relational databases

Document Databases
MongoDB
CouchDB

Key-Value Stores
Redis
Cassandra

Message Queues
AMQP
Celery

Various Others
Graph databases
Filesystems
VCSs

Redis and MongoDB are
two good examples here

Redis: Key-value store with
strings, lists, sets, channels

and atomic operations.

Redis Example
conn = redis.Redis(host="localhost")
print conn.get("top_value")
conn.set("last_user", "andrew")
conn.inc("num_runs")
conn.sadd("users", "andrew")
conn.sadd("users", "martin")
for item in conn.smembers("users"):
 print item

MongoDB: Document store
with indexing and a wide

range of query filters.

MongoDB Example
conn = pymongo.Connection("localhost")
db = conn['mongo_example']
coll = db['users']
coll.insert({
 "username": "andrew",
 "uid": 1000,
})
for entry in coll.find({"username":
"andrew"}):
 print entry

These all solve different
problems - you can't easily
replace one with the other.

""When all you have is a
hammer, everything

looks like a nail""
Abraham Manslow (paraphrased)

JOIN - your best friend,
and your worst enemy.

Denormalising your data speeds
up reads, and slows down writes.

Schemaless != Denormalised

Atomic operations are nice.
conn.incrby("num_users', 2)

But SQL can do some of them.
UPDATE foo SET bar = bar + 1 WHERE baz;

Redis, the datastructures server.
SETNX, GETSET, EXPIRES and friends

Locks / Semaphores
conn.setnx("lock:foo", time.time() + 3600)

val = conn.decr("sem:foo")
if val >= 0: ... else: conn.incr("sem:foo")

Queues
conn.lpush("myqueue", "workitem")

todo = conn.lpop("myqueue")
(or publish/subscribe)

Priority Queues
conn.zadd("myqueue", "handle-meltdown", 1)

conn.zadd("myqueue", "feed-cats", 5)
todo = conn.zrange("myqueue", 0, 1)

conn.zrem(todo)

Lock-free linked lists!
new_id = "bgrdsd"

old_end = conn.getset(":end", new_id)
conn.set("%s:next" % old_end, new_id)

Performance-wise, the less
checks/integrity the faster

it goes.

Maturity can sometimes be
an issue, but new features

can appear rapidly.

You can also use databases
for the wrong thing - it

often only matters ""at scale""

But how does this all
relate to Python?

Most databases - even
new ones - have good

Python bindings

Postgres: PsycoPG2
Redis: redis-py

MongoDB: pymongo
(and more - neo4j, VCSen, relational, etc.)

Some databases have
Python available inside

(Postgres has it as an option)

Document databases map
really well to Python dicts

You may find non-relational
databases a nicer way to
store state - for any app

Remember, you might still
need transactions/reliability.

(Business logic is probably better
off on mature systems for now)

Overall? Just keep all
the options in mind.

Don't get caught by trends,
and don't abuse your relational store

Thanks.
Andrew Godwin
@andrewgodwin
http://aeracode.org

